3.8.99 \(\int \frac {a+b \sec (c+d x)}{\sqrt {\cos (c+d x)}} \, dx\) [799]

Optimal. Leaf size=57 \[ -\frac {2 b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 b \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \]

[Out]

-2*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*a*(cos(1/2*d*x+
1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*b*sin(d*x+c)/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 57, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {4310, 2827, 2716, 2719, 2720} \begin {gather*} \frac {2 a F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {2 b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 b \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[c + d*x])/Sqrt[Cos[c + d*x]],x]

[Out]

(-2*b*EllipticE[(c + d*x)/2, 2])/d + (2*a*EllipticF[(c + d*x)/2, 2])/d + (2*b*Sin[c + d*x])/(d*Sqrt[Cos[c + d*
x]])

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 4310

Int[(csc[(a_.) + (b_.)*(x_)]*(B_.) + (A_))*(u_), x_Symbol] :> Int[ActivateTrig[u]*((B + A*Sin[a + b*x])/Sin[a
+ b*x]), x] /; FreeQ[{a, b, A, B}, x] && KnownSineIntegrandQ[u, x]

Rubi steps

\begin {align*} \int \frac {a+b \sec (c+d x)}{\sqrt {\cos (c+d x)}} \, dx &=\int \frac {b+a \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\\ &=a \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+b \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {2 a F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 b \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-b \int \sqrt {\cos (c+d x)} \, dx\\ &=-\frac {2 b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 b \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.10, size = 51, normalized size = 0.89 \begin {gather*} \frac {2 \left (-b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+a F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+\frac {b \sin (c+d x)}{\sqrt {\cos (c+d x)}}\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sec[c + d*x])/Sqrt[Cos[c + d*x]],x]

[Out]

(2*(-(b*EllipticE[(c + d*x)/2, 2]) + a*EllipticF[(c + d*x)/2, 2] + (b*Sin[c + d*x])/Sqrt[Cos[c + d*x]]))/d

________________________________________________________________________________________

Maple [A]
time = 0.15, size = 150, normalized size = 2.63

method result size
default \(\frac {4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b -2 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, a -2 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, b}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(150\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2*(2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*b-a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)
*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE
(cos(1/2*d*x+1/2*c),2^(1/2))*b)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.61, size = 156, normalized size = 2.74 \begin {gather*} \frac {-i \, \sqrt {2} a \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} a \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - i \, \sqrt {2} b \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + i \, \sqrt {2} b \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, b \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{d \cos \left (d x + c\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

(-I*sqrt(2)*a*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + I*sqrt(2)*a*cos(d*x + c
)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - I*sqrt(2)*b*cos(d*x + c)*weierstrassZeta(-4, 0,
weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + I*sqrt(2)*b*cos(d*x + c)*weierstrassZeta(-4, 0, w
eierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*b*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x +
c))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a + b \sec {\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))/cos(d*x+c)**(1/2),x)

[Out]

Integral((a + b*sec(c + d*x))/sqrt(cos(c + d*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Mupad [B]
time = 1.25, size = 60, normalized size = 1.05 \begin {gather*} \frac {2\,a\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,b\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/cos(c + d*x))/cos(c + d*x)^(1/2),x)

[Out]

(2*a*ellipticF(c/2 + (d*x)/2, 2))/d + (2*b*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c
+ d*x)^(1/2)*(sin(c + d*x)^2)^(1/2))

________________________________________________________________________________________